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Adjectives Again 

■  Bill is a poor piano player ⊭ Bill is poor 

■  Adjectives cannot be of type ⟨e, t⟩, but must analyzed as 
modifiers (⟨⟨e, t⟩, ⟨e, t⟩⟩), in the general case that map predicates 
onto predicates. Since the mapping is unrestricted, A+N 
constructions do not entail anything anymore. However, 
adjectives can be subdivided into different sub-classes with 
specific inferential properties: 

■  Bill is a poor piano player ⊨ Bill is a piano player 

■  Bill is a blond piano player ⊨ Bill is blond 

■  Bill is a former professor ⊨ Bill isn’t a professor 
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Adjective Classes 

■  Restrictive or subsective adjectives (“poor”) 
■  VM(poor)(S) ⊆ S, for all S⊆UM 

■  Privative adjectives (“former”) 
■  VM(former)(S) ∩ S = ∅ 

■  Intersective adjectives (“blond”) 
  VM(blond)(S) = S∩T for some specific first-order predicate 
N⊆UM (i.e., the predicate denoting the blond persons) 
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Meaning Postulates 
■  Semantically appropriate type-theoretic model structures must 

observe the constraints for the respective adjective classes.  

■  The constraints can be represented as type-theoretic formulas: 
■  ∀G∀x(poor(G)(x) → G(x)) 
■  ∀G∀x(blond(G)(x) → (blond*(x) ∧ G(x)) 

 Note: blond* ∈ WE(e,t) is used to denote the first-order predicate 
underlying the interpretation of blond 

■  ∀G∀x(former(G)(x) → ¬G(x)) 

■  These type-theoretic formulas are assumed to be generally valid 
axioms that constrain the set of possible model structures. 
Traditionally, they are are called meaning postulates. 



The Principle of Compositionality 

■  The meaning of a complex expression is uniquely 
determined by the meaning of its parts and its syntactic 
structure. 

 (Gottlob Frege, late 19th century) 

■  Practically realized as a two-step procedure: 

 (1) Semantic Construction: Construct semantic   
  representation φ from NL input  sentence S.  

 (2) Truth-Conditional Interpretation: Compute ⟦φ⟧ by 
recursive application of semantic interpretation rules.  

5 



Semantic Construction 

■  Combine type-logical expressions to each other, observing 
type fit and NL syntactic structure.  

   Bill likes Mary ⇒ like’(mary’)(bill’) 
   
   like’: ⟨e,⟨e, t⟩⟩    mary’: e 
    like’(mary’): ⟨e, t⟩   bill’: e  
     like’(mary’)(bill’): t 
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Explicit Semantic Construction Rules 
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■  If in a binary branching local syntactic structure B and C 
are daughters of A, B⇒β:⟨σ,τ⟩ and C ⇒γ:σ, then A⇒ β(γ):τ. 

■  If in a unary branching tree A is mother of B and B⇒β, then 
also A⇒β.       

S 
like(mary)(bill): t 

NP 
bill: e 

PN 
bill: e 

Bill 

VP 
like(mary): ⟨e, t⟩ 

V 
like: ⟨e,⟨e, t⟩⟩  

NP 
mary: e 

PN 
mary: e 

likes 

Mary 



Quantification in NL: A Challenge for 
Compositional Semantics 
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∀d (student(d)→ ∃p (paper(p) ∧present(d,p))) 

Every student presented a paper 



NL Quantifier Expressions 
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S 
???: t 

NP 
someone: ? 

Someone 

VP 
like(mary): ⟨e, t⟩ 

V 
like: ⟨e,⟨e, t⟩⟩  

NP 
mary: e 

PN 
mary: e 

likes 

Mary 



NL Quantifier Expressions 
■  First attempt: Assume type e for all kinds of NPs 

 Someone works ⇒ work’(someone’) 

     someone’: e   work’: ⟨e,t⟩ 

              work’(someone’): t 

■  This does not work. So we try it the other way round: 

 Someone works ⇒ someone’(work’) 

    someone’: ⟨⟨e,t⟩,t⟩   work’: ⟨e,t⟩ 

     someone’(work’): t 

■  We analyse “someone“ as a second-order predicate. 
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NL Quantifier Expressions 
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S 
someone(like(mary)): t 

NP 
someone: ⟨⟨e, t⟩,t⟩  

Someone 

VP 
like(mary): ⟨e, t⟩ 

V 
like: ⟨e,⟨e, t⟩⟩  

NP 
mary: e 

PN 
mary: e 

likes 

Mary 



NL Quantifier Expressions: 
Interpretation 
■  someone’∈ CON⟨⟨e,t⟩,t⟩, so VM(someone’) ∈ D⟨⟨e,t⟩,t⟩ 

■  D⟨⟨e,t⟩,t⟩ is the set of functions from D⟨e,t⟩ to Dt , i.e., 

  the set of functions from P(U) to {0,1},  

  which in turn is equivalent to P(P(U)). 

■  Thus,  VM(someone’) ⊆ P(UM). More specifically: 

■  VM(someone’) = {S ⊆ UM | S ≠∅}, if UM is a domain of persons 

■  VM(everyone’) = {UM}, if UM is a domain of persons 
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NL Quantifier Expressions: 
Interpretation 

■  ⟦someone’(work’)⟧ M,g
 =  

 ⟦someone’⟧ M,g
 (⟦work’⟧ M,g

 ) = 
 VM(someone’)(VM(work’)) 

■  VM(someone’)(VM(work’)) = 1 iff 
 VM(work’) ∈ VM(someone’) iff 
 VM(work’) ≠∅, which holds just in the case that  
 some person/entity in model structure M works 
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NL Determiners  
■  Every student works 

   every’: ?     student’: ⟨e,t⟩ 

    ??? : ⟨⟨e,t⟩,t⟩        work’: ⟨e,t⟩ 

     ???(work’): t 

  every’: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩    student’: ⟨e,t⟩ 

    every’(student’): ⟨⟨e,t⟩,t⟩       work’: ⟨e,t⟩ 

    every’(student’)(work’): t 
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NL Determiners: Interpretation 
■  every’∈ CON⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩, so VM(every’) ∈ D⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ 

■  D⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ is the set of functions from D⟨e,t⟩ to D⟨⟨e,t⟩,t⟩ , i.e., the set 
of functions from possible first-order predicates to possible 
second-order predicates (the latter being functions from first-
order-predicates to truth values). 

■  In other words (considering characteristic-function/set 
equivalence and currying), D⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ is P(D⟨e,t⟩×D⟨e,t⟩), i.e., the set 
of second-order two-place relations between first-order one-place 
predicates. 

■  Thus VM(every’) ⊆ P(UM)×P(UM). More specifically: 

■  VM(every’) = {⟨S,T⟩ | S, T ⊆ UM and S ⊆ T} 
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NL Determiners: Interpretation 
Every student works  ⇒ every’(student’)(work’) 

  ⟦every’(student’)(work’)⟧ M,g
 =  

  ⟦every’(student’)⟧ M,g
 (⟦work’⟧ M,g

 )=  

  ⟦every’⟧ M,g
 (⟦student’⟧ M,g

 )(⟦work’⟧ M,g
 ) = 

  VM(every’)(VM(student’)) (VM(work’))  

  VM(every’)(VM(student’)) (VM(work’)) = 1 iff    (char. function!) 

  VM(work’) ∈ VM(every’)(VM(student’)) iff     (currying!) 

    ⟨VM(student’), VM(work’)⟩ ∈  VM(every’)  iff  (interpr. of every) 

  VM(student’) ⊆ VM(work’) 
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Some More Determiners 
■  every’, some’/a’, no’, most’∈ CON⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ 

■  VM(every’) = {⟨S,T⟩ | S ⊆ T} 

■  VM(some’) = {⟨S,T⟩ | S∩T ≠ ∅} 

■  VM(no’) = {⟨S,T⟩ | S∩T = ∅} 

■  VM(most’) = {⟨S,T⟩ | |S∩T| ≥ |S - T|} 
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Proper Names: Revised Analysis 

■  Proper names and quantified NPs have different types, proper 
names are arguments, quantified NPs are functors. 

 someone’: ⟨⟨e,t⟩,t⟩     work’: ⟨e,t⟩  john’: e   work’: ⟨e,t⟩ 
        someone’(work’): t    work’(john’): t 

■  How can we obtain a unified semantics of noun phrases? 
■  Assigning type e to someone’ does not work. 
■  So we do it the other way round: “Raising” proper names to type 

⟨⟨e,t⟩,t⟩.  

     john’: ⟨⟨e,t⟩,t⟩   work’: ⟨e,t⟩ 
                    john’(work’): t     
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Proper Names: Interpretation 
■  john’∈ CON⟨⟨e,t⟩,t⟩, so VM(john’) ∈ D⟨⟨e,t⟩,t⟩ 

■  Proper names are second-order predicates denoting sets of sets. 

■  Thus VM(john’) ⊆ P(UM). More specifically: 

■  VM(john’) = {S ⊆ UM | j ∈ S}, for some specific entity j ∈ UM (i.e., 
the person John) 

■  ⟦john’(work’)⟧ M,g
 = 1  iff 

 VM(john’)(VM(work’)) = 1  iff 
 VM(work’) ∈ VM(john’) iff 
 j ∈ VM(work’) 
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