
Semantic Theory
Lecture 4: Type Theory 3

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

2

Adjectives Again

■  Bill is a poor piano player ⊭ Bill is poor

■  Adjectives cannot be of type ⟨e, t⟩, but must analyzed as
modifiers (⟨⟨e, t⟩, ⟨e, t⟩⟩), in the general case that map predicates
onto predicates. Since the mapping is unrestricted, A+N
constructions do not entail anything anymore. However,
adjectives can be subdivided into different sub-classes with
specific inferential properties:

■  Bill is a poor piano player ⊨ Bill is a piano player

■  Bill is a blond piano player ⊨ Bill is blond

■  Bill is a former professor ⊨ Bill isn’t a professor

3

Adjective Classes

■  Restrictive or subsective adjectives (“poor”)
■  VM(poor)(S) ⊆ S, for all S⊆UM

■  Privative adjectives (“former”)
■  VM(former)(S) ∩ S = ∅

■  Intersective adjectives (“blond”)
 VM(blond)(S) = S∩T for some specific first-order predicate
N⊆UM (i.e., the predicate denoting the blond persons)

4

Meaning Postulates
■  Semantically appropriate type-theoretic model structures must

observe the constraints for the respective adjective classes.

■  The constraints can be represented as type-theoretic formulas:
■  ∀G∀x(poor(G)(x) → G(x))
■  ∀G∀x(blond(G)(x) → (blond*(x) ∧ G(x))

 Note: blond* ∈ WE(e,t) is used to denote the first-order predicate
underlying the interpretation of blond

■  ∀G∀x(former(G)(x) → ¬G(x))

■  These type-theoretic formulas are assumed to be generally valid
axioms that constrain the set of possible model structures.
Traditionally, they are are called meaning postulates.

The Principle of Compositionality

■  The meaning of a complex expression is uniquely
determined by the meaning of its parts and its syntactic
structure.

 (Gottlob Frege, late 19th century)

■  Practically realized as a two-step procedure:

 (1) Semantic Construction: Construct semantic
 representation φ from NL input sentence S.

 (2) Truth-Conditional Interpretation: Compute ⟦φ⟧ by
recursive application of semantic interpretation rules.

5

Semantic Construction

■  Combine type-logical expressions to each other, observing
type fit and NL syntactic structure.

 Bill likes Mary ⇒ like’(mary’)(bill’)

 like’: ⟨e,⟨e, t⟩⟩ mary’: e
 like’(mary’): ⟨e, t⟩ bill’: e
 like’(mary’)(bill’): t

6

Explicit Semantic Construction Rules

7

■  If in a binary branching local syntactic structure B and C
are daughters of A, B⇒β:⟨σ,τ⟩ and C ⇒γ:σ, then A⇒ β(γ):τ.

■  If in a unary branching tree A is mother of B and B⇒β, then
also A⇒β.

S
like(mary)(bill): t

NP
bill: e

PN
bill: e

Bill

VP
like(mary): ⟨e, t⟩

V
like: ⟨e,⟨e, t⟩⟩

NP
mary: e

PN
mary: e

likes

Mary

Quantification in NL: A Challenge for
Compositional Semantics

8

∀d (student(d)→ ∃p (paper(p) ∧present(d,p)))

Every student presented a paper

NL Quantifier Expressions

9

S
???: t

NP
someone: ?

Someone

VP
like(mary): ⟨e, t⟩

V
like: ⟨e,⟨e, t⟩⟩

NP
mary: e

PN
mary: e

likes

Mary

NL Quantifier Expressions
■  First attempt: Assume type e for all kinds of NPs

 Someone works ⇒ work’(someone’)

 someone’: e work’: ⟨e,t⟩

 work’(someone’): t

■  This does not work. So we try it the other way round:

 Someone works ⇒ someone’(work’)

 someone’: ⟨⟨e,t⟩,t⟩ work’: ⟨e,t⟩

 someone’(work’): t

■  We analyse “someone“ as a second-order predicate.

10

NL Quantifier Expressions

11

S
someone(like(mary)): t

NP
someone: ⟨⟨e, t⟩,t⟩

Someone

VP
like(mary): ⟨e, t⟩

V
like: ⟨e,⟨e, t⟩⟩

NP
mary: e

PN
mary: e

likes

Mary

NL Quantifier Expressions:
Interpretation
■  someone’∈ CON⟨⟨e,t⟩,t⟩, so VM(someone’) ∈ D⟨⟨e,t⟩,t⟩

■  D⟨⟨e,t⟩,t⟩ is the set of functions from D⟨e,t⟩ to Dt , i.e.,

 the set of functions from P(U) to {0,1},

 which in turn is equivalent to P(P(U)).

■  Thus, VM(someone’) ⊆ P(UM). More specifically:

■  VM(someone’) = {S ⊆ UM | S ≠∅}, if UM is a domain of persons

■  VM(everyone’) = {UM}, if UM is a domain of persons

12

NL Quantifier Expressions:
Interpretation

■  ⟦someone’(work’)⟧ M,g
 =

 ⟦someone’⟧ M,g
 (⟦work’⟧ M,g

) =
 VM(someone’)(VM(work’))

■  VM(someone’)(VM(work’)) = 1 iff
 VM(work’) ∈ VM(someone’) iff
 VM(work’) ≠∅, which holds just in the case that
 some person/entity in model structure M works

13

NL Determiners
■  Every student works

 every’: ? student’: ⟨e,t⟩

 ??? : ⟨⟨e,t⟩,t⟩ work’: ⟨e,t⟩

 ???(work’): t

 every’: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ student’: ⟨e,t⟩

 every’(student’): ⟨⟨e,t⟩,t⟩ work’: ⟨e,t⟩

 every’(student’)(work’): t

14

NL Determiners: Interpretation
■  every’∈ CON⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩, so VM(every’) ∈ D⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

■  D⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ is the set of functions from D⟨e,t⟩ to D⟨⟨e,t⟩,t⟩ , i.e., the set
of functions from possible first-order predicates to possible
second-order predicates (the latter being functions from first-
order-predicates to truth values).

■  In other words (considering characteristic-function/set
equivalence and currying), D⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ is P(D⟨e,t⟩×D⟨e,t⟩), i.e., the set
of second-order two-place relations between first-order one-place
predicates.

■  Thus VM(every’) ⊆ P(UM)×P(UM). More specifically:

■  VM(every’) = {⟨S,T⟩ | S, T ⊆ UM and S ⊆ T}

15

NL Determiners: Interpretation
Every student works ⇒ every’(student’)(work’)

 ⟦every’(student’)(work’)⟧ M,g
 =

 ⟦every’(student’)⟧ M,g
 (⟦work’⟧ M,g

)=

 ⟦every’⟧ M,g
 (⟦student’⟧ M,g

)(⟦work’⟧ M,g
) =

 VM(every’)(VM(student’)) (VM(work’))

 VM(every’)(VM(student’)) (VM(work’)) = 1 iff (char. function!)

 VM(work’) ∈ VM(every’)(VM(student’)) iff (currying!)

 ⟨VM(student’), VM(work’)⟩ ∈ VM(every’) iff (interpr. of every)

 VM(student’) ⊆ VM(work’)

16

Some More Determiners
■  every’, some’/a’, no’, most’∈ CON⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

■  VM(every’) = {⟨S,T⟩ | S ⊆ T}

■  VM(some’) = {⟨S,T⟩ | S∩T ≠ ∅}

■  VM(no’) = {⟨S,T⟩ | S∩T = ∅}

■  VM(most’) = {⟨S,T⟩ | |S∩T| ≥ |S - T|}

17

Proper Names: Revised Analysis

■  Proper names and quantified NPs have different types, proper
names are arguments, quantified NPs are functors.

 someone’: ⟨⟨e,t⟩,t⟩ work’: ⟨e,t⟩ john’: e work’: ⟨e,t⟩
 someone’(work’): t work’(john’): t

■  How can we obtain a unified semantics of noun phrases?
■  Assigning type e to someone’ does not work.
■  So we do it the other way round: “Raising” proper names to type

⟨⟨e,t⟩,t⟩.

 john’: ⟨⟨e,t⟩,t⟩ work’: ⟨e,t⟩
 john’(work’): t

18

Proper Names: Interpretation
■  john’∈ CON⟨⟨e,t⟩,t⟩, so VM(john’) ∈ D⟨⟨e,t⟩,t⟩

■  Proper names are second-order predicates denoting sets of sets.

■  Thus VM(john’) ⊆ P(UM). More specifically:

■  VM(john’) = {S ⊆ UM | j ∈ S}, for some specific entity j ∈ UM (i.e.,
the person John)

■  ⟦john’(work’)⟧ M,g
 = 1 iff

 VM(john’)(VM(work’)) = 1 iff
 VM(work’) ∈ VM(john’) iff
 j ∈ VM(work’)

19

