Semantic Theory Lecture 4: Type Theory 3

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Adjectives Again

- Bill is a poor piano player \neq Bill is poor
- Adjectives cannot be of type $\langle\mathrm{e}, \mathrm{t}\rangle$, but must analyzed as modifiers ($\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle)$, in the general case that map predicates onto predicates. Since the mapping is unrestricted, $\mathrm{A}+\mathrm{N}$ constructions do not entail anything anymore. However, adjectives can be subdivided into different sub-classes with specific inferential properties:
- Bill is a poor piano player \vDash Bill is a piano player
- Bill is a blond piano player \vDash Bill is blond
- Bill is a former professor \vDash Bill isn't a professor

Adjective Classes

- Restrictive or subsective adjectives ("poor")
- $\mathrm{V}_{\mathrm{M}}($ poor $)(\mathrm{S}) \subseteq \mathrm{S}$, for all $\mathrm{S} \subseteq \mathrm{U}_{\mathrm{M}}$

■ Privative adjectives ("former")

- V_{M} (former)(S) $\mathrm{n} \mathrm{S}=\varnothing$

■ Intersective adjectives ("blond")
$\mathrm{V}_{\mathrm{M}}($ blond $)(\mathrm{S})=\mathrm{S} \cap \mathrm{T}$ for some specific first-order predicate $N \subseteq U_{M}$ (i.e., the predicate denoting the blond persons)

Meaning Postulates

- Semantically appropriate type-theoretic model structures must observe the constraints for the respective adjective classes.
- The constraints can be represented as type-theoretic formulas:
- $\forall G \forall x(\operatorname{poor}(G)(x) \rightarrow G(x))$
- $\forall G \forall x($ blond $(G)(x) \rightarrow(b l o n d *(x) \wedge G(x))$

Note: blond* $\in \mathrm{WE}_{(\mathrm{e}, \mathrm{t})}$ is used to denote the first-order predicate underlying the interpretation of blond

- $\forall G \forall x(f o r m e r(G)(x) \rightarrow \neg G(x))$
- These type-theoretic formulas are assumed to be generally valid axioms that constrain the set of possible model structures. Traditionally, they are are called meaning postulates.

The Principle of Compositionality

- The meaning of a complex expression is uniquely determined by the meaning of its parts and its syntactic structure.
(Gottlob Frege, late 19th century)
- Practically realized as a two-step procedure:
(1) Semantic Construction: Construct semantic representation φ from NL input sentence S.
(2) Truth-Conditional Interpretation: Compute $\llbracket \varphi \rrbracket$ by recursive application of semantic interpretation rules.

Semantic Construction

- Combine type-logical expressions to each other, observing type fit and NL syntactic structure.

Bill likes Mary \Rightarrow like'(mary')(bill')

$$
\begin{aligned}
& \underline{\text { like' }: ~}\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle \quad \text { mary': e } \\
& \frac{\text { like'(mary'): }\langle\mathrm{e}, \mathrm{t}\rangle \quad \text { bill': e }}{\text { like' }^{\prime}(\text { mary' })(\text { bill' }): \mathrm{t}}
\end{aligned}
$$

Explicit Semantic Construction Rules

- If in a binary branching local syntactic structure B and C are daughters of $A, B \Rightarrow \beta:\langle\sigma, \tau\rangle$ and $C \Rightarrow \gamma: \sigma$, then $A \Rightarrow \beta(\gamma): \tau$.
- If in a unary branching tree A is mother of B and $B \Rightarrow \beta$, then also $A \Rightarrow \beta$.

Quantification in NL: A Challenge for Compositional Semantics

Every student presented a paper

NL Quantifier Expressions

NL Quantifier Expressions

- First attempt: Assume type e for all kinds of NPs

Someone works \Rightarrow work'(someone')

$$
\begin{gathered}
\text { someone': e work': }\langle e, t\rangle \\
\text { work'(someone'): } t
\end{gathered}
$$

- This does not work. So we try it the other way round:

Someone works \Rightarrow someone'(work')

$$
\begin{gathered}
\text { someone': }\langle\langle e, t\rangle, t\rangle \text { work': }\langle e, t\rangle \\
\text { someone'(work'): } t
\end{gathered}
$$

■ We analyse "someone" as a second-order predicate.

NL Quantifier Expressions

NL Quantifier Expressions: Interpretation

- someone' $\in \operatorname{CON}_{\langle\langle e, t\rangle, t\rangle}$, so $\mathrm{V}_{\mathrm{M}}($ someone' $) \in \mathrm{D}_{\langle(\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle}$
- $D_{\langle\langle e, t\rangle, t\rangle}$ is the set of functions from $D_{\langle e, t\rangle}$ to D_{t}, i.e., the set of functions from $\mathcal{P}(\mathrm{U})$ to $\{0,1\}$, which in turn is equivalent to $\mathcal{P}(\mathcal{P}(U))$.
- Thus, $\mathrm{V}_{\mathrm{M}}($ someone' $) \subseteq \mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)$. More specifically:
- $\mathrm{V}_{\mathrm{M}}($ someone' $)=\left\{S \subseteq \mathrm{U}_{\mathrm{M}} \mid S \neq \varnothing\right\}$, if U_{M} is a domain of persons
- $V_{M}($ everyone' $)=\left\{U_{M}\right\}$, if U_{M} is a domain of persons

NL Quantifier Expressions: Interpretation

- \llbracket someone'(work') $\rrbracket^{M, 9}=$
\llbracket someone' $\rrbracket^{M, 9}\left(\llbracket\right.$ work' $^{\text { }}{ }^{\text {M,g }}$) =
$\mathrm{V}_{\mathrm{M}}($ someone' $)\left(\mathrm{V}_{\mathrm{M}}\right.$ (work') $)$
- $\mathrm{V}_{\mathrm{M}}($ someone' $)\left(\mathrm{V}_{\mathrm{M}}\left(\right.\right.$ work' $\left.\left.^{\prime}\right)\right)=1$ iff
$\mathrm{V}_{\mathrm{M}}\left(\right.$ work' $\left.^{\prime}\right) \in \mathrm{V}_{\mathrm{M}}$ (someone') iff
V_{M} (work') $\neq \varnothing$, which holds just in the case that some person/entity in model structure M works

Every student works
every': ? student': $\langle\mathrm{e}, \mathrm{t}\rangle$
???: $\langle\langle e, t\rangle, t\rangle \quad$ work': $\langle e, t\rangle$
???(work'): t

$$
\begin{aligned}
& \text { every': }\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle \quad \text { student': }\langle e, t\rangle \\
& \\
& \frac{\text { every'(student'): }\langle\langle e, t\rangle, t\rangle \quad \text { work': }\langle e, t\rangle}{} \begin{array}{l}
\text { every'(student')(work'): t }
\end{array}
\end{aligned}
$$

NL Determiners: Interpretation

$\square e^{\prime} \operatorname{CON}_{\langle\langle e, t\rangle,\langle(e, t\rangle, t\rangle\rangle}$, so $\mathrm{V}_{\mathrm{M}}($ every' $) \in \mathrm{D}_{\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle}$

- $D_{\langle\langle e, t\rangle,\langle(e, t\rangle, t\rangle\rangle}$ is the set of functions from $D_{\langle e, t\rangle}$ to $D_{\langle\langle e, t\rangle, t\rangle}$, i.e., the set of functions from possible first-order predicates to possible second-order predicates (the latter being functions from first-order-predicates to truth values).
- In other words (considering characteristic-function/set equivalence and currying), $D_{\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle}$ is $P\left(D_{\langle e, t\rangle} \times D_{\langle e, t\rangle}\right)$, i.e., the set of second-order two-place relations between first-order one-place predicates.
- Thus $\mathrm{V}_{\mathrm{M}}($ every' $) \subseteq \mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right) \times \mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)$. More specifically:
- $\mathrm{V}_{\mathrm{M}}($ every' $)=\left\{\langle\mathrm{S}, \mathrm{T}\rangle \mid \mathrm{S}, \mathrm{T} \subseteq \mathrm{U}_{\mathrm{M}}\right.$ and $\left.\mathrm{S} \subseteq \mathrm{T}\right\}$

NL Determiners：Interpretation

Every student works \Rightarrow every＇（student＇）（work＇）
«every＇（student＇）（work＇）】 ${ }^{\mathrm{M}, \mathrm{g}}=$
$\llbracket e v e r y '($ student $) \rrbracket^{\mathrm{M}, \mathrm{g}}\left(\llbracket\right.$ work＇$^{\mathrm{M}, \mathrm{g}}$ ）＝
【every’】 ${ }^{\mathrm{M}, \mathrm{g}}$（【student＇】 ${ }^{\mathrm{M}, \mathrm{g}}$ ）（【work＇$\rrbracket^{\mathrm{M}, \mathrm{g}}$ ）＝
$\mathrm{V}_{\mathrm{M}}($ every＇$)\left(\mathrm{V}_{\mathrm{M}}(\right.$ student＇$\left.)\right)\left(\mathrm{V}_{\mathrm{M}}(\right.$ work＇$\left.)\right)$
$\mathrm{V}_{\mathrm{M}}\left(\right.$ every $\left.^{\prime}\right)\left(\mathrm{V}_{\mathrm{M}}(\right.$ student＇$\left.)\right)\left(\mathrm{V}_{\mathrm{M}}\left(\right.\right.$ work＇$\left.\left.^{\prime}\right)\right)=1$ iff \quad（char．function！$)$
$\mathrm{V}_{\mathrm{M}}\left(\right.$ work＇$\left.^{\prime}\right) \in \mathrm{V}_{\mathrm{M}}($ every＇$)\left(\mathrm{V}_{\mathrm{M}}\right.$（student＇）$)$ iff（currying！）
$\left\langle\mathrm{V}_{\mathrm{M}}(\right.$ student＇$), \mathrm{V}_{\mathrm{M}}\left(\right.$ work $\left.\left.^{\prime}\right)\right\rangle \in \mathrm{V}_{\mathrm{M}}($ every＇）iff（interpr．of every）
$\mathrm{V}_{\mathrm{M}}($ student＇$) \subseteq \mathrm{V}_{\mathrm{M}}\left(\right.$ work $\left.^{\prime}\right)$

Some More Determiners

■ every', some'/a', no', most' $\in \operatorname{CON}_{\langle\langle e, t\rangle,\langle(e, t\rangle, t\rangle\rangle}$

■ $\mathrm{V}_{\mathrm{M}}($ every' $)=\{\langle\mathrm{S}, \mathrm{T}\rangle \mid \mathrm{S} \subseteq \mathrm{T}\}$

- $\mathrm{V}_{\mathrm{M}}\left(\right.$ some $\left.{ }^{\prime}\right)=\{\langle\mathrm{S}, \mathrm{T}\rangle \mid \mathrm{S} \cap \mathrm{T} \neq \varnothing\}$

■ $\mathrm{V}_{\mathrm{M}}\left(\mathrm{no}{ }^{\prime}\right)=\{\langle\mathrm{S}, \mathrm{T}\rangle \mid \mathrm{S} \cap \mathrm{T}=\varnothing\}$

- $\mathrm{V}_{\mathrm{M}}\left(\right.$ most' $\left.^{\prime}\right)=\{\langle\mathrm{S}, \mathrm{T}\rangle| | \mathrm{S} \cap \mathrm{T}|\geq|\mathrm{S}-\mathrm{T}|\}$

Proper Names: Revised Analysis

- Proper names and quantified NPs have different types, proper names are arguments, quantified NPs are functors.

$$
\begin{array}{cc}
\text { someone': }\langle\langle e, t\rangle, t\rangle \quad \text { work': }\langle\mathrm{e}, \mathrm{t}\rangle & \text { john': e work': }\langle\mathrm{e}, \mathrm{t}\rangle \\
\text { someone'(work'): } \mathrm{t} & \text { work' }^{\prime}\left(j o h n^{\prime}\right): \mathrm{t}
\end{array}
$$

- How can we obtain a unified semantics of noun phrases?
- Assigning type e to someone' does not work.
- So we do it the other way round: "Raising" proper names to type $\langle\langle e, t\rangle, t\rangle$.

$$
\begin{gathered}
\text { john': }\langle\langle e, t\rangle, t\rangle \quad \text { work': }\langle e, t\rangle \\
\text { john'(work'): t }
\end{gathered}
$$

Proper Names: Interpretation

- john' $\in \operatorname{CON}_{\langle(e, t\rangle, t\rangle}$, so $\mathrm{V}_{\mathrm{M}}\left(\mathrm{john}{ }^{\prime}\right) \in \mathrm{D}_{\langle(e, t\rangle, t\rangle}$
- Proper names are second-order predicates denoting sets of sets.
- Thus $\mathrm{V}_{\mathrm{M}}($ john' $) \subseteq \mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)$. More specifically:
- $\mathrm{V}_{\mathrm{M}}\left(\mathrm{john}{ }^{\prime}\right)=\left\{\mathrm{S} \subseteq \mathrm{U}_{\mathrm{M}} \mid \mathrm{j} \in \mathrm{S}\right\}$, for some specific entity $\mathrm{j} \in \mathrm{U}_{\mathrm{M}}$ (i.e., the person John)

$\mathrm{V}_{\mathrm{M}}\left(\mathrm{john}{ }^{\prime}\right)\left(\mathrm{V}_{\mathrm{M}}\left(\right.\right.$ work' $\left.\left.^{\prime}\right)\right)=1$ iff
$\mathrm{V}_{\mathrm{M}}\left(\right.$ work' $\left.^{\prime}\right) \in \mathrm{V}_{\mathrm{M}}($ john' $)$ iff
$\mathrm{j} \in \mathrm{V}_{\mathrm{M}}$ (work')

