## Semantic Theory Lecture 4: Type Theory 3

#### Manfred Pinkal FR 4.7 Computational Linguistics and Phonetics

Summer 2014



## Adjectives Again

- Bill is a poor piano player  $\nvDash$  Bill is poor
- Adjectives cannot be of type (e, t), but must analyzed as modifiers (((e, t), (e, t))), in the general case that map predicates onto predicates. Since the mapping is unrestricted, A+N constructions do not entail anything anymore. However, adjectives can be subdivided into different sub-classes with specific inferential properties:
- Bill is a poor piano player  $\vDash$  Bill is a piano player
- Bill is a blond piano player  $\models$  Bill is blond
- Bill is a former professor  $\models$  Bill isn't a professor

## Adjective Classes

#### Restrictive or subsective adjectives ("poor")

- $V_M(poor)(S) \subseteq S$ , for all  $S \subseteq U_M$
- Privative adjectives ("former")
  - $V_M$ (former)(S)  $\cap$  S = Ø

#### Intersective adjectives ("blond")

 $V_M$ (blond)(S) = S $\cap$ T for some specific first-order predicate  $N \subseteq U_M$  (i.e., the predicate denoting the blond persons)

#### Meaning Postulates

- Semantically appropriate type-theoretic model structures must observe the constraints for the respective adjective classes.
- The constraints can be represented as type-theoretic formulas:
  - $\forall G \forall x (poor(G)(x) \rightarrow G(x))$
  - $\forall G \forall x (blond(G)(x) \rightarrow (blond^*(x) \land G(x))$

Note:  $blond^* \in WE_{(e,t)}$  is used to denote the first-order predicate underlying the interpretation of *blond* 

- $\forall G \forall x (former(G)(x) \rightarrow \neg G(x))$
- These type-theoretic formulas are assumed to be generally valid axioms that constrain the set of possible model structures. Traditionally, they are are called **meaning postulates**.

## The Principle of Compositionality

The meaning of a complex expression is uniquely determined by the meaning of its parts and its syntactic structure.

(Gottlob Frege, late 19<sup>th</sup> century)

- Practically realized as a two-step procedure:
  - (1) Semantic Construction: Construct semantic representation  $\varphi$  from NL input sentence S.

**(2) Truth-Conditional Interpretation**: Compute **[**φ**]** by recursive application of semantic interpretation rules.

### Semantic Construction

Combine type-logical expressions to each other, observing type fit and NL syntactic structure.

*Bill likes Mary* ⇒ like'(mary')(bill')

<u>like': (e, (e, t)) mary': e</u> <u>like'(mary'): (e, t) bill': e</u> like'(mary')(bill'): t

#### **Explicit Semantic Construction Rules**

- If in a binary branching local syntactic structure B and C are daughters of A, B⇒β: $(\sigma, \tau)$  and C ⇒γ:σ, then A⇒ β(γ):τ.
- If in a unary branching tree A is mother of B and  $B \Rightarrow \beta$ , then also  $A \Rightarrow \beta$ .



## Quantification in NL: A Challenge for Compositional Semantics

*Every* student presented *a* paper

∀d (student(d)→  $\exists p$  (paper(p) ^present(d,p)))

#### **NL** Quantifier Expressions



#### **NL** Quantifier Expressions

First attempt: Assume type e for all kinds of NPs

*Someone works* ⇒ work'(someone')

someone': e work': (e,t)

work'(someone'): t

This does not work. So we try it the other way round:

*Someone works* ⇒ someone'(work')

<u>someone': ({e,t},t} work': {e,t}</u>

someone'(work'): t

We analyse "someone" as a second-order predicate.

#### **NL Quantifier Expressions**



# NL Quantifier Expressions: Interpretation

- someone'  $\in CON_{\langle\langle e,t\rangle,t\rangle}$ , so  $V_M$ (someone')  $\in D_{\langle\langle e,t\rangle,t\rangle}$
- $D_{\langle (e,t\rangle,t\rangle}$  is the set of functions from  $D_{\langle e,t\rangle}$  to  $D_t$ , i.e., the set of functions from  $\mathcal{P}(U)$  to  $\{0,1\}$ , which in turn is equivalent to  $\mathcal{P}(\mathcal{P}(U))$ .
- Thus,  $V_M$ (someone')  $\subseteq \mathcal{P}(U_M)$ . More specifically:
- $V_M$ (someone') = {S ⊆  $U_M$  | S ≠Ø}, if  $U_M$  is a domain of persons
- $V_M$ (everyone') = { $U_M$ }, if  $U_M$  is a domain of persons

# NL Quantifier Expressions: Interpretation

- [someone'(work')] <sup>M,g</sup> =
  [someone'] <sup>M,g</sup> ([work'] <sup>M,g</sup>) =
  V<sub>M</sub>(someone')(V<sub>M</sub>(work'))
- $V_M(\text{someone'})(V_M(\text{work'})) = 1$  iff  $V_M(\text{work'}) \in V_M(\text{someone'})$  iff  $V_M(\text{work'}) \neq \emptyset$ , which holds just in the case that some person/entity in model structure M works

#### **NL** Determiners

Every student works

<u>every': ? student': (e,t)</u> <u>???</u>: ((e,t),t) work': (e,t) <u>???</u>(work'): t

every': ((e,t),((e,t),t)) student': (e,t)

<u>every'(student'): ((e,t),t)</u> work': (e,t)

every'(student')(work'): t

#### NL Determiners: Interpretation

- every'  $\in CON_{\langle\langle e,t \rangle, \langle\langle e,t \rangle, t \rangle\rangle}$ , so  $V_M(every') \in D_{\langle\langle e,t \rangle, \langle\langle e,t \rangle, t \rangle\rangle}$
- $D_{\langle (e,t), \langle (e,t),t \rangle \rangle}$  is the set of functions from  $D_{\langle e,t \rangle}$  to  $D_{\langle \langle e,t \rangle,t \rangle}$ , i.e., the set of functions from possible first-order predicates to possible second-order predicates (the latter being functions from first-order-predicates to truth values).
- In other words (considering characteristic-function/set equivalence and currying), D<sub>((e,t),((e,t),t)</sub> is P(D<sub>(e,t)</sub>×D<sub>(e,t)</sub>), i.e., the set of second-order two-place relations between first-order one-place predicates.
- Thus  $V_M(every') \subseteq \mathcal{P}(U_M) \times \mathcal{P}(U_M)$ . More specifically:
- $V_M(every') = \{ \langle S,T \rangle \mid S, T \subseteq U_M \text{ and } S \subseteq T \}$

## NL Determiners: Interpretation

*Every student works* ⇒ every'(student')(work')

[every'(student')(work')] <sup>M,g</sup> =

[every'(student')] <sup>M,g</sup> ([work'] <sup>M,g</sup>)=

[every'] <sup>M,g</sup> ([student'] <sup>M,g</sup>)([work'] <sup>M,g</sup>) =

V<sub>M</sub>(every')(V<sub>M</sub>(student')) (V<sub>M</sub>(work'))

 $V_{M}(every')(V_{M}(student')) (V_{M}(work')) = 1 \text{ iff (char. function!)}$  $V_{M}(work') \in V_{M}(every')(V_{M}(student')) \text{ iff (currying!)}$  $(V_{M}(student'), V_{M}(work')) \in V_{M}(every') \text{ iff (interpr. of every)}$  $V_{M}(student') \subseteq V_{M}(work')$ 

## Some More Determiners

- every', some'/a', no', most'  $\in CON_{\langle \langle e,t \rangle, \langle \langle e,t \rangle, t \rangle \rangle}$
- $V_M(every') = \{ \langle S,T \rangle \mid S \subseteq T \}$
- $V_{M}(\text{some'}) = \{\langle S,T \rangle \mid S \cap T \neq \emptyset\}$
- $V_M(no') = \{\langle S,T \rangle \mid S \cap T = \emptyset\}$
- $V_{M}(most') = \{\langle S,T \rangle \mid |S \cap T| \ge |S T|\}$

## Proper Names: Revised Analysis

Proper names and quantified NPs have different types, proper names are arguments, quantified NPs are functors.

<u>someone': {{e,t},t} work': {e,t}</u> john': e work': {e,t} someone'(work'): t work'(john'): t

- How can we obtain a unified semantics of noun phrases?
- Assigning type e to someone' does not work.
- So we do it the other way round: "Raising" proper names to type <u>((e,t),t)</u>.

john': ((e,t),t) work': (e,t)

john'(work'): t

#### **Proper Names: Interpretation**

- john' ∈ CON<sub>((e,t),t)</sub>, so V<sub>M</sub>(john') ∈ D<sub>((e,t),t)</sub>
- Proper names are second-order predicates denoting sets of sets.
- Thus  $V_M(john') \subseteq \mathcal{P}(U_M)$ . More specifically:
- $V_M(john') = \{S \subseteq U_M \mid j \in S\}$ , for some specific entity  $j \in U_M$  (i.e., the person John)
- Ijohn'(work')]  $^{M,g} = 1$  iff  $V_M(john')(V_M(work')) = 1$  iff  $V_M(work') \in V_M(john')$  iff  $j \in V_M(work')$